inferno.trainers.callbacks package¶
Subpackages¶
Submodules¶
inferno.trainers.callbacks.base module¶
-
class
inferno.trainers.callbacks.base.
Callback
[source]¶ Bases: object
Recommended (but not required) base class for callbacks.
-
trainer
¶
-
-
class
inferno.trainers.callbacks.base.
CallbackEngine
[source]¶ Bases: object
Gathers and manages callbacks.
Callbacks are callables which are to be called by trainers when certain events (‘triggers’) occur. They could be any callable object, but if endowed with a bind_trainer method, it’s called when the callback is registered. It is recommended that callbacks (or their __call__ methods) use the double-star syntax for keyword arguments.
-
BEGIN_OF_EPOCH
= 'begin_of_epoch'¶
-
BEGIN_OF_FIT
= 'begin_of_fit'¶
-
BEGIN_OF_SAVE
= 'begin_of_save'¶
-
BEGIN_OF_TRAINING_ITERATION
= 'begin_of_training_iteration'¶
-
BEGIN_OF_TRAINING_RUN
= 'begin_of_training_run'¶
-
BEGIN_OF_VALIDATION_ITERATION
= 'begin_of_validation_iteration'¶
-
BEGIN_OF_VALIDATION_RUN
= 'begin_of_validation_run'¶
-
END_OF_EPOCH
= 'end_of_epoch'¶
-
END_OF_FIT
= 'end_of_fit'¶
-
END_OF_SAVE
= 'end_of_save'¶
-
END_OF_TRAINING_ITERATION
= 'end_of_training_iteration'¶
-
END_OF_TRAINING_RUN
= 'end_of_training_run'¶
-
END_OF_VALIDATION_ITERATION
= 'end_of_validation_iteration'¶
-
END_OF_VALIDATION_RUN
= 'end_of_validation_run'¶
-
TRIGGERS
= {'begin_of_validation_run', 'end_of_epoch', 'end_of_validation_iteration', 'begin_of_save', 'end_of_training_iteration', 'end_of_save', 'begin_of_fit', 'end_of_validation_run', 'begin_of_validation_iteration', 'begin_of_training_iteration', 'begin_of_training_run', 'begin_of_epoch', 'end_of_fit', 'end_of_training_run'}¶
-
trainer_is_bound
¶
-
inferno.trainers.callbacks.console module¶
inferno.trainers.callbacks.essentials module¶
-
class
inferno.trainers.callbacks.essentials.
DumpHDF5Every
(frequency, to_directory, filename_template='dump.{mode}.epoch{epoch_count}.iteration{iteration_count}.h5', force_dump=False, dump_after_every_validation_run=False)[source]¶ Bases: inferno.trainers.callbacks.base.Callback
Dumps intermediate training states to a HDF5 file.
-
dump_every
¶
-
dump_now
¶
-
-
class
inferno.trainers.callbacks.essentials.
ParameterEMA
(momentum)[source]¶ Bases: inferno.trainers.callbacks.base.Callback
Maintain a moving average of network parameters.
-
class
inferno.trainers.callbacks.essentials.
PersistentSave
(template='checkpoint.pytorch.epoch{epoch_count}.iteration{iteration_count}')[source]¶
-
class
inferno.trainers.callbacks.essentials.
SaveAtBestValidationScore
(smoothness=0, verbose=False)[source]¶ Bases: inferno.trainers.callbacks.base.Callback
Triggers a save at the best EMA (exponential moving average) validation score. The basic Trainer has built in support for saving at the best validation score, but this callback might eventually replace that functionality.
inferno.trainers.callbacks.scheduling module¶
-
class
inferno.trainers.callbacks.scheduling.
AutoLR
(factor, patience, required_minimum_relative_improvement=0, consider_improvement_with_respect_to='best', cooldown_duration=None, monitor='auto', monitor_momentum=0, monitor_while='auto', exclude_param_groups=None, verbose=False)[source]¶ Bases: inferno.trainers.callbacks.scheduling._Scheduler
Callback to decay or hike the learning rate automatically when a specified monitor stops improving.
The monitor should be decreasing, i.e. lower value –> better performance.
-
cooldown_duration
¶
-
duration_since_last_decay
¶
-
duration_since_last_improvment
¶
-
in_cooldown
¶
-
monitor_value_has_significantly_improved
¶
-
out_of_patience
¶
-
patience
¶
-
-
class
inferno.trainers.callbacks.scheduling.
AutoLRDecay
(factor, patience, required_minimum_relative_improvement=0, consider_improvement_with_respect_to='best', cooldown_duration=None, monitor='auto', monitor_momentum=0, monitor_while='auto', exclude_param_groups=None, verbose=False)[source]¶ Bases: inferno.trainers.callbacks.scheduling.AutoLR
Callback to decay the learning rate automatically when a specified monitor stops improving.
The monitor should be decreasing, i.e. lower value –> better performance.
inferno.trainers.callbacks.tqdm module¶
-
class
inferno.trainers.callbacks.tqdm.
TQDMProgressBar
(*args, **kwargs)[source]¶
inferno.trainers.callbacks.tqdmstub module¶
Module contents¶
-
class
inferno.trainers.callbacks.
CallbackEngine
[source]¶ Bases: object
Gathers and manages callbacks.
Callbacks are callables which are to be called by trainers when certain events (‘triggers’) occur. They could be any callable object, but if endowed with a bind_trainer method, it’s called when the callback is registered. It is recommended that callbacks (or their __call__ methods) use the double-star syntax for keyword arguments.
-
BEGIN_OF_EPOCH
= 'begin_of_epoch'¶
-
BEGIN_OF_FIT
= 'begin_of_fit'¶
-
BEGIN_OF_SAVE
= 'begin_of_save'¶
-
BEGIN_OF_TRAINING_ITERATION
= 'begin_of_training_iteration'¶
-
BEGIN_OF_TRAINING_RUN
= 'begin_of_training_run'¶
-
BEGIN_OF_VALIDATION_ITERATION
= 'begin_of_validation_iteration'¶
-
BEGIN_OF_VALIDATION_RUN
= 'begin_of_validation_run'¶
-
END_OF_EPOCH
= 'end_of_epoch'¶
-
END_OF_FIT
= 'end_of_fit'¶
-
END_OF_SAVE
= 'end_of_save'¶
-
END_OF_TRAINING_ITERATION
= 'end_of_training_iteration'¶
-
END_OF_TRAINING_RUN
= 'end_of_training_run'¶
-
END_OF_VALIDATION_ITERATION
= 'end_of_validation_iteration'¶
-
END_OF_VALIDATION_RUN
= 'end_of_validation_run'¶
-
TRIGGERS
= {'begin_of_validation_run', 'end_of_epoch', 'end_of_validation_iteration', 'begin_of_save', 'end_of_training_iteration', 'end_of_save', 'begin_of_fit', 'end_of_validation_run', 'begin_of_validation_iteration', 'begin_of_training_iteration', 'begin_of_training_run', 'begin_of_epoch', 'end_of_fit', 'end_of_training_run'}¶
-
trainer_is_bound
¶
-
-
class
inferno.trainers.callbacks.
Callback
[source]¶ Bases: object
Recommended (but not required) base class for callbacks.
-
trainer
¶
-
-
class
inferno.trainers.callbacks.
Console
(printer=<inferno.trainers.callbacks.console.StdoutPrinter object>)[source]¶ Bases: object
-
LEVEL_DEBUG
= 4¶
-
LEVEL_INFO
= 1¶
-
LEVEL_PROGRESS
= 2¶
-
LEVEL_WARNING
= 3¶
-
-
class
inferno.trainers.callbacks.
TQDMProgressBar
(*args, **kwargs)[source]¶