inferno.trainers.callbacks package¶
Subpackages¶
Submodules¶
inferno.trainers.callbacks.base module¶
- 
class inferno.trainers.callbacks.base.Callback[source]¶
- Bases: object - Recommended (but not required) base class for callbacks. - 
trainer¶
 
- 
- 
class inferno.trainers.callbacks.base.CallbackEngine[source]¶
- Bases: object - Gathers and manages callbacks. - Callbacks are callables which are to be called by trainers when certain events (‘triggers’) occur. They could be any callable object, but if endowed with a bind_trainer method, it’s called when the callback is registered. It is recommended that callbacks (or their __call__ methods) use the double-star syntax for keyword arguments. - 
BEGIN_OF_EPOCH= 'begin_of_epoch'¶
 - 
BEGIN_OF_FIT= 'begin_of_fit'¶
 - 
BEGIN_OF_SAVE= 'begin_of_save'¶
 - 
BEGIN_OF_TRAINING_ITERATION= 'begin_of_training_iteration'¶
 - 
BEGIN_OF_TRAINING_RUN= 'begin_of_training_run'¶
 - 
BEGIN_OF_VALIDATION_ITERATION= 'begin_of_validation_iteration'¶
 - 
BEGIN_OF_VALIDATION_RUN= 'begin_of_validation_run'¶
 - 
END_OF_EPOCH= 'end_of_epoch'¶
 - 
END_OF_FIT= 'end_of_fit'¶
 - 
END_OF_SAVE= 'end_of_save'¶
 - 
END_OF_TRAINING_ITERATION= 'end_of_training_iteration'¶
 - 
END_OF_TRAINING_RUN= 'end_of_training_run'¶
 - 
END_OF_VALIDATION_ITERATION= 'end_of_validation_iteration'¶
 - 
END_OF_VALIDATION_RUN= 'end_of_validation_run'¶
 - 
TRIGGERS= {'begin_of_validation_run', 'end_of_epoch', 'end_of_validation_iteration', 'begin_of_save', 'end_of_training_iteration', 'end_of_save', 'begin_of_fit', 'end_of_validation_run', 'begin_of_validation_iteration', 'begin_of_training_iteration', 'begin_of_training_run', 'begin_of_epoch', 'end_of_fit', 'end_of_training_run'}¶
 - 
trainer_is_bound¶
 
- 
inferno.trainers.callbacks.console module¶
inferno.trainers.callbacks.essentials module¶
- 
class inferno.trainers.callbacks.essentials.DumpHDF5Every(frequency, to_directory, filename_template='dump.{mode}.epoch{epoch_count}.iteration{iteration_count}.h5', force_dump=False, dump_after_every_validation_run=False)[source]¶
- Bases: inferno.trainers.callbacks.base.Callback - Dumps intermediate training states to a HDF5 file. - 
dump_every¶
 - 
dump_now¶
 
- 
- 
class inferno.trainers.callbacks.essentials.ParameterEMA(momentum)[source]¶
- Bases: inferno.trainers.callbacks.base.Callback - Maintain a moving average of network parameters. 
- 
class inferno.trainers.callbacks.essentials.PersistentSave(template='checkpoint.pytorch.epoch{epoch_count}.iteration{iteration_count}')[source]¶
- 
class inferno.trainers.callbacks.essentials.SaveAtBestValidationScore(smoothness=0, verbose=False)[source]¶
- Bases: inferno.trainers.callbacks.base.Callback - Triggers a save at the best EMA (exponential moving average) validation score. The basic Trainer has built in support for saving at the best validation score, but this callback might eventually replace that functionality. 
inferno.trainers.callbacks.scheduling module¶
- 
class inferno.trainers.callbacks.scheduling.AutoLR(factor, patience, required_minimum_relative_improvement=0, consider_improvement_with_respect_to='best', cooldown_duration=None, monitor='auto', monitor_momentum=0, monitor_while='auto', exclude_param_groups=None, verbose=False)[source]¶
- Bases: inferno.trainers.callbacks.scheduling._Scheduler - Callback to decay or hike the learning rate automatically when a specified monitor stops improving. - The monitor should be decreasing, i.e. lower value –> better performance. - 
cooldown_duration¶
 - 
duration_since_last_decay¶
 - 
duration_since_last_improvment¶
 - 
in_cooldown¶
 - 
monitor_value_has_significantly_improved¶
 - 
out_of_patience¶
 - 
patience¶
 
- 
- 
class inferno.trainers.callbacks.scheduling.AutoLRDecay(factor, patience, required_minimum_relative_improvement=0, consider_improvement_with_respect_to='best', cooldown_duration=None, monitor='auto', monitor_momentum=0, monitor_while='auto', exclude_param_groups=None, verbose=False)[source]¶
- Bases: inferno.trainers.callbacks.scheduling.AutoLR - Callback to decay the learning rate automatically when a specified monitor stops improving. - The monitor should be decreasing, i.e. lower value –> better performance. 
inferno.trainers.callbacks.tqdm module¶
- 
class inferno.trainers.callbacks.tqdm.TQDMProgressBar(*args, **kwargs)[source]¶
inferno.trainers.callbacks.tqdmstub module¶
Module contents¶
- 
class inferno.trainers.callbacks.CallbackEngine[source]¶
- Bases: object - Gathers and manages callbacks. - Callbacks are callables which are to be called by trainers when certain events (‘triggers’) occur. They could be any callable object, but if endowed with a bind_trainer method, it’s called when the callback is registered. It is recommended that callbacks (or their __call__ methods) use the double-star syntax for keyword arguments. - 
BEGIN_OF_EPOCH= 'begin_of_epoch'¶
 - 
BEGIN_OF_FIT= 'begin_of_fit'¶
 - 
BEGIN_OF_SAVE= 'begin_of_save'¶
 - 
BEGIN_OF_TRAINING_ITERATION= 'begin_of_training_iteration'¶
 - 
BEGIN_OF_TRAINING_RUN= 'begin_of_training_run'¶
 - 
BEGIN_OF_VALIDATION_ITERATION= 'begin_of_validation_iteration'¶
 - 
BEGIN_OF_VALIDATION_RUN= 'begin_of_validation_run'¶
 - 
END_OF_EPOCH= 'end_of_epoch'¶
 - 
END_OF_FIT= 'end_of_fit'¶
 - 
END_OF_SAVE= 'end_of_save'¶
 - 
END_OF_TRAINING_ITERATION= 'end_of_training_iteration'¶
 - 
END_OF_TRAINING_RUN= 'end_of_training_run'¶
 - 
END_OF_VALIDATION_ITERATION= 'end_of_validation_iteration'¶
 - 
END_OF_VALIDATION_RUN= 'end_of_validation_run'¶
 - 
TRIGGERS= {'begin_of_validation_run', 'end_of_epoch', 'end_of_validation_iteration', 'begin_of_save', 'end_of_training_iteration', 'end_of_save', 'begin_of_fit', 'end_of_validation_run', 'begin_of_validation_iteration', 'begin_of_training_iteration', 'begin_of_training_run', 'begin_of_epoch', 'end_of_fit', 'end_of_training_run'}¶
 - 
trainer_is_bound¶
 
- 
- 
class inferno.trainers.callbacks.Callback[source]¶
- Bases: object - Recommended (but not required) base class for callbacks. - 
trainer¶
 
- 
- 
class inferno.trainers.callbacks.Console(printer=<inferno.trainers.callbacks.console.StdoutPrinter object>)[source]¶
- Bases: object - 
LEVEL_DEBUG= 4¶
 - 
LEVEL_INFO= 1¶
 - 
LEVEL_PROGRESS= 2¶
 - 
LEVEL_WARNING= 3¶
 
- 
- 
class inferno.trainers.callbacks.TQDMProgressBar(*args, **kwargs)[source]¶